Correlations between sagittal plane kinematics and landing impact force during single-leg lateral jump-landings
نویسندگان
چکیده
[Purpose] The correlations of peak vertical ground reaction force and sagittal angles during single-leg lateral jump-landing with noncontact anterior cruciate ligament injury remain unknown. This study aimed to clarify the correlations between kinematics and impact force during lateral jump-landing. [Subjects and Methods] Twenty active males were included in the analysis. A sagittal-view movie camera and force plate were time synchronized. Trunk and lower extremity sagittal angles were measured 100 ms before initial contact and at peak vertical ground reaction force. Peak vertical ground reaction force, time between initial contact and peak vertical ground reaction force, and loading rate were calculated. [Results] The mean sagittal angle was 40.7° ± 7.7° for knee flexion during the flight phase and 16.4° ± 6.3° for pelvic anterior inclination during the landing phase. The mean peak vertical ground reaction force was four times the body weight. The median time to peak vertical ground reaction force was 63.8 ms. The knee flexion during the flight phase and pelvic anterior inclination angles during the landing phase were related to the peak vertical ground reaction force. [Conclusion] Increasing knee flexion and decreasing pelvic anterior inclination might reduce the impact during single-leg lateral jump-landing.
منابع مشابه
Biomechanical Comparison of Single- and Double-Leg Jump Landings in the Sagittal and Frontal Plane
BACKGROUND Double-leg forward or drop-jump landing activities are typically used to screen for high-risk movement strategies and to determine the success of neuromuscular injury prevention programs. However, research suggests that these tasks that occur primarily in the sagittal plane may not adequately represent the lower extremity biomechanics that occur during unilateral foot contact or non-...
متن کاملEffect of Genu Varum Deformity on Gluteus Medius Muscle Activity and Postural Control During Single-Leg Jump-Landing
Purpose: Genu varum deformity changes the line of gravity from center of knee towards the medial side. This deviation results in changes in the upper part of the lower extremity that can affect postural control as well as the position and activity of the proximal muscles of the knee joint, like the gluteus medius muscle. Therefore this study aims to investigate the effect of genu varum disorder...
متن کاملThe lower extremity biomechanics of single- and double-leg stop-jump tasks.
The anterior cruciate ligament (ACL) injury is a common occurrence in sports requiring stop-jump tasks. Single- and double-leg stop-jump techniques are frequently executed in sports. The higher risk of ACL injury in single-leg drop landing task compared to a double-leg drop landing task has been identified. However the injury bias between single- and double-leg landing techniques has not been i...
متن کاملInvestigating Tibialis Anterior Muscle Activity Levels in Patients With Genu Varum During Single-Leg Jump-Landing Task
Purpose: This study aimed to investigate the effect of genu varum abnormality on the activity of the anterior leg calf muscle during single-leg jump-landing task. Methods: A total of 28 male students of Physical Education (Mean±SD age: 21.53±1.65 y, weight: 66.67±7.15 kg, height: 173.38±4.54 cm) were assigned into the genu varum (n=14) and normal knee (n=14) groups. Their level of activity of...
متن کاملKinematics and Kinetics Predictor of Proximal Tibia Anterior Shear Force during Single Leg Drop Landing
Purpose: The purpose of this study was to investigate the kinematic and kinetic variables, which predict anterior tibia shear force during single-leg landing in female athletes. Methods: Forty-three subjects (mean and standard deviation for age 21.12 ± 2.00 y, height 168.58 ± 7.62 cm, and weight 60.27 ± 7.80 kg) participated in this study. Kinematic and kinetic variables of lower extremity...
متن کامل